This tutorial can be downloaded [link](http://greatfire.uchicago.edu/west-devel/westpy/blob/master/doc/westpy_100.ipynb).
This tutorial can be downloaded [link](http://greatfire.uchicago.edu/west-public/westpy/blob/master/doc/westpy_100.ipynb).
%% Cell type:markdown id: tags:
# 1 Getting Started: Ground State
%% Cell type:markdown id: tags:
We are going to generate an input file for the QuantumEspresso code or Qbox. Each code will compute the ground state electronic stucture for the methane molecule using Density Functional Theory.
%% Cell type:markdown id: tags:
## Step 1: Load westpy
%% Cell type:code id: tags:
``` python
fromwestpyimport*
```
%%%% Output: stream
_ _ _____ _____ _____
| | | | ___/ ___|_ _|
| | | | |__ \ `--. | |_ __ _ _
| |/\| | __| `--. \ | | '_ \| | | |
\ /\ / |___/\__/ / | | |_) | |_| |
\/ \/\____/\____/ \_/ .__/ \__, |
| | __/ |
|_| |___/
WEST version : 3.1.0
Today : 2018-06-24 20:14:52.640543
%% Cell type:markdown id: tags:
## Step 1: Geometry
%% Cell type:code id: tags:
``` python
geom=Geometry()
```
%% Cell type:markdown id: tags:
Let's define a cubic cell of edge 25 Bohr.
%% Cell type:code id: tags:
``` python
geom.setCell((25,0,0),(0,25,0),(0,0,25))
```
%% Cell type:markdown id: tags:
We load the atomic positions from a XYZ file, available online.
The ground state calculation is defined by the geometry, a choice of the exchange-correlation functional, and by setting an energy cutoff for the wavefunctions.
%% Cell type:code id: tags:
``` python
gs=GroundState(geom,xc="PBE",ecut=40.0)
```
%% Cell type:markdown id: tags:
We are now able to generate the input file for QuantumEspresso.
%% Cell type:code id: tags:
``` python
gs.generateInputPW()
```
%%%% Output: stream
Generated file: pw.in
%% Cell type:markdown id: tags:
We can inspect the file pw.in
%% Cell type:code id: tags:
``` python
withopen("pw.in","r")asfile:
data=file.read()
print(data)
```
%%%% Output: stream
&CONTROL
calculation = 'scf'
restart_mode = 'from_scratch'
pseudo_dir = './'
outdir = './'
prefix = 'calc'
wf_collect = .TRUE.
/
&SYSTEM
ibrav = 0
nat = 5
ntyp = 2
ecutwfc = 40.0
nbnd = 8
input_dft = 'PBE'
nosym = .TRUE.
noinv = .TRUE.
/
&ELECTRONS
diago_full_acc = .TRUE.
conv_tol = 1.d-8
/
ATOMIC_SPECIES
C 12.011 C_ONCV_PBE-1.0.upf
H 1.008 H_ONCV_PBE-1.0.upf
ATOMIC_POSITIONS {bohr}
C 0.0 0.0 0.0
H 1.185992116575257 -1.185803143962673 1.185992116575257
H -1.185992116575257 1.185992116575257 1.185992116575257
H -1.185992116575257 -1.185992116575257 -1.185992116575257
H 1.185992116575257 1.185992116575257 -1.185992116575257
K_POINTS {gamma}
CELL_PARAMETERS {bohr}
25.0 0.0 0.0
0.0 25.0 0.0
0.0 0.0 25.0
%% Cell type:markdown id: tags:
We can optionally also download the pseudopotentials files.
%% Cell type:code id: tags:
``` python
gs.downloadPseudopotentials()
```
%%%% Output: stream
Downloaded file: C_ONCV_PBE-1.0.upf , from url: http://www.quantum-simulation.org/potentials/sg15_oncv/upf/C_ONCV_PBE-1.0.upf
Downloaded file: H_ONCV_PBE-1.0.upf , from url: http://www.quantum-simulation.org/potentials/sg15_oncv/upf/H_ONCV_PBE-1.0.upf
%% Cell type:markdown id: tags:
## Step 3: Ground State with Qbox
%% Cell type:markdown id: tags:
To generate the input for Qbox we can simply update Species to use the xml formats.