Commit c27f7075 authored by Marco Govoni's avatar Marco Govoni
Browse files

Improving tutorials

parent e8d01ac9
%% Cell type:markdown id: tags:
This tutorial can be downloaded [link](http://greatfire.uchicago.edu/west-public/West/raw/master/doc/tutorials/west_100.ipynb).
%% Cell type:markdown id: tags:
# 1.0 Getting Started: GW calculation
%% Cell type:markdown id: tags:
In order to compute the GW electronic structure of the silane molecule you need to run `pw.x`, `wstat.x` and `wfreq.x` in sequence.
%% Cell type:markdown id: tags:
## Step 1: Ground State
%% Cell type:markdown id: tags:
The ground state electronic structure of silane molecule with [QuantumEspresso](https://www.quantum-espresso.org/) is obtained by running `pw.x`. The pseudopotential files for **Si** and **H** in UPF format can be downloaded from: [QE-PP](https://www.quantum-espresso.org/pseudopotentials) database, or from [SG15](http://www.quantum-simulation.org/potentials/sg15_oncv/upf/) database. Check out the `pw.x` [input description](https://www.quantum-espresso.org/Doc/INPUT_PW.html) in order to generate an input file for QuantumEspresso called `pw.in`.
The ground state electronic structure of silane molecule with [QuantumEspresso 6.1.0](https://www.quantum-espresso.org/) is obtained by running `pw.x`. The pseudopotential files for **Si** and **H** in UPF format can be downloaded from: [QE-PP](https://www.quantum-espresso.org/pseudopotentials) database, or from [SG15](http://www.quantum-simulation.org/potentials/sg15_oncv/upf/) database. Check out the `pw.x` [input description](https://www.quantum-espresso.org/Doc/INPUT_PW.html) in order to generate an input file for QuantumEspresso called `pw.in`.
%% Cell type:markdown id: tags:
Download these files in your current working directory:
%% Cell type:code id: tags:
``` python
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/pw.in
wget -N -q http://www.quantum-simulation.org/potentials/sg15_oncv/upf/H_ONCV_PBE-1.0.upf
wget -N -q http://www.quantum-simulation.org/potentials/sg15_oncv/upf/Si_ONCV_PBE-1.1.upf
wget -N -q http://www.quantum-simulation.org/potentials/sg15_oncv/upf/H_ONCV_PBE-1.2.upf
wget -N -q http://www.quantum-simulation.org/potentials/sg15_oncv/upf/Si_ONCV_PBE-1.2.upf
```
%% Cell type:markdown id: tags:
Let's inspect the ``pw.in`` file, input for ``pw.x``.
%% Cell type:code id: tags:
``` python
%%bash
cat pw.in
```
%%%% Output: stream
&control
calculation = 'scf'
restart_mode = 'from_scratch'
pseudo_dir = './'
outdir = './'
prefix = 'silane'
wf_collect = .TRUE.
/
&system
ibrav = 1
celldm(1) = 20
nat = 5
ntyp = 2
ecutwfc = 25.0
nbnd = 10
assume_isolated ='mp'
/
&electrons
diago_full_acc = .TRUE.
/
ATOMIC_SPECIES
Si 28.0855 Si_ONCV_PBE-1.1.upf
H 1.00794 H_ONCV_PBE-1.0.upf
Si 28.0855 Si_ONCV_PBE-1.2.upf
H 1.00794 H_ONCV_PBE-1.2.upf
ATOMIC_POSITIONS bohr
Si 10.000000 10.000000 10.000000
H 11.614581 11.614581 11.614581
H 8.385418 8.385418 11.614581
H 8.385418 11.614581 8.385418
H 11.614581 8.385418 8.385418
K_POINTS {gamma}
%% Cell type:markdown id: tags:
Run ``pw.in`` on 2 cores.
%% Cell type:code id: tags:
``` python
%%bash
mpirun -n 2 pw.x -i pw.in > pw.out
mpirun -n 2 pw.x < pw.in > pw.out
```
%% Cell type:markdown id: tags:
The output file ``pw.out`` contains information about the ground state calculation.
%% Cell type:markdown id: tags:
## Step 2: Screening
%% Cell type:markdown id: tags:
The static dielectric screening is computed using the projective dielectric eigendecomposition (PDEP) technique. Check out the ``wstat.x`` [input description](http://www.west-code.org/doc/West/latest/) and generate an input file for WEST called ``wstat.in``.
%% Cell type:markdown id: tags:
Download this file in your current working directory:
%% Cell type:code id: tags:
``` python
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/wstat.in
```
%% Cell type:markdown id: tags:
Let's inspect the ``wstat.in`` file, input for ``wstat.x``.
%% Cell type:code id: tags:
``` python
%%bash
cat wstat.in
```
%%%% Output: stream
input_west:
qe_prefix: silane
west_prefix: silane
outdir: ./
wstat_control:
wstat_calculation: S
n_pdep_eigen: 50
%% Cell type:markdown id: tags:
Run ``wstat.in`` on 2 cores.
%% Cell type:code id: tags:
``` python
%%bash
mpirun -n 2 wstat.x -i wstat.in > wstat.out
```
%% Cell type:markdown id: tags:
The output file ``wstat.out`` contains information about the PDEP iterations, and the dielectric eigenvalues can be found in the file ``west_prefix.wstat.save/wstat.json``.
The output file ``wstat.out`` contains information about the PDEP iterations, and the dielectric eigenvalues can be found in the file ``<west_prefix>.wstat.save/wstat.json``.
%% Cell type:code id: tags:
``` python
import json
import numpy as np
import matplotlib.pyplot as plt
with open('silane.wstat.save/wstat.json') as json_file:
data = json.load(json_file)
ev = np.array(data["exec"]["davitr"][-1]["ev"],dtype="f8")
iv = np.linspace(1,ev.size,ev.size,endpoint=True)
plt.plot(iv,ev,'o-',label="XXX")
plt.xlabel("i")
plt.ylabel("PDEP eigenvalue")
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
## Step 3: GW
%% Cell type:markdown id: tags:
The GW electronic structure is computed treating the frequency integration of the correlation part of the self energy with the Contour Deformation techinique and by computing the dielectric screening at multipole frequencies with Lanczos iterations. Check out the ``wfreq.x`` [input description](http://www.west-code.org/doc/West/latest/) and generate an input file for WEST called ``wfreq.in``.
%% Cell type:markdown id: tags:
Download this file in your current working directory:
%% Cell type:code id: tags:
``` python
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/wfreq.in
```
%% Cell type:markdown id: tags:
Let's inspect the ``wfreq.in`` file, input for ``wfreq.x``.
%% Cell type:code id: tags:
``` python
%%bash
cat wfreq.in
```
%%%% Output: stream
input_west:
qe_prefix: silane
west_prefix: silane
outdir: ./
wstat_control:
wstat_calculation: S
n_pdep_eigen: 50
wfreq_control:
wfreq_calculation: XWGQ
n_pdep_eigen_to_use: 50
qp_bandrange: [1,5]
n_refreq: 300
ecut_refreq: 2.0
%% Cell type:markdown id: tags:
Run ``wfreq.in`` on 2 cores.
%% Cell type:code id: tags:
``` python
%%bash
mpirun -n 2 wfreq.x -i wfreq.in > wfreq.out
```
%% Cell type:markdown id: tags:
The output file ``wfreq.out`` contains information about the calculation of the GW self-energy, and the corrected electronic structure can be found in the file ``west_prefix.wstat.save/wfreq.json``.
The output file ``wfreq.out`` contains information about the calculation of the GW self-energy, and the corrected electronic structure can be found in the file ``<west_prefix>.wstat.save/wfreq.json``.
%% Cell type:code id: tags:
``` python
import json
import numpy as np
with open('silane.wfreq.save/wfreq.json') as json_file:
data = json.load(json_file)
k=1
kindex = f"K{k:06d}"
print(kindex)
print()
bandmap = data["output"]["Q"]["bandmap"]
eqp = data["output"]["Q"][kindex]
for i, b in enumerate(bandmap) :
print(f"band = {b}")
for key in eqp:
if("re" in eqp[key]):
print(f" {key} = {eqp[key]['re'][i]:.3f}, {eqp[key]['im'][i]:.3f} eV")
else:
print(f" {key} = {eqp[key][i]:.3f} eV")
print()
```
%%%% Output: stream
K000001
band = 1
sigmax = -17.606 eV
vxcl = -11.250 eV
vxcnl = 0.000 eV
hf = -6.357 eV
z = 0.661 eV
eks = -13.236 eV
eqpLin = -16.273 eV
eqpSec = -16.135 eV
sigmac_eks = 1.765, 0.015 eV
sigmac_eqpLin = 3.577, 0.076 eV
sigmac_eqpSec = 3.439, 0.116 eV
sigma_diff = -0.023 eV
band = 2
sigmax = -15.766 eV
vxcl = -11.243 eV
vxcnl = 0.000 eV
hf = -4.523 eV
z = 0.869 eV
eks = -8.231 eV
eqpLin = -12.151 eV
eqpSec = -12.046 eV
sigmac_eks = 0.011, 0.003 eV
sigmac_eqpLin = 0.730, 0.009 eV
sigmac_eqpSec = 0.707, 0.009 eV
sigma_diff = -0.003 eV
band = 3
sigmax = -15.765 eV
vxcl = -11.243 eV
vxcnl = 0.000 eV
hf = -4.523 eV
z = 0.869 eV
eks = -8.231 eV
eqpLin = -12.148 eV
eqpSec = -12.044 eV
sigmac_eks = 0.013, 0.003 eV
sigmac_eqpLin = 0.732, 0.009 eV
sigmac_eqpSec = 0.709, 0.009 eV
sigma_diff = -0.003 eV
band = 4
sigmax = -15.765 eV
vxcl = -11.242 eV
vxcnl = 0.000 eV
hf = -4.523 eV
z = 0.869 eV
eks = -8.230 eV
eqpLin = -12.148 eV
eqpSec = -12.043 eV
sigmac_eks = 0.013, 0.003 eV
sigmac_eqpLin = 0.732, 0.009 eV
sigmac_eqpSec = 0.709, 0.009 eV
sigma_diff = -0.003 eV
band = 5
sigmax = -0.587 eV
vxcl = -2.090 eV
vxcnl = 0.000 eV
hf = 1.503 eV
z = 0.980 eV
eks = -0.466 eV
eqpLin = 0.666 eV
eqpSec = 0.665 eV
sigmac_eks = -0.349, -0.000 eV
sigmac_eqpLin = -0.373, -0.000 eV
sigmac_eqpSec = -0.373, -0.000 eV
sigma_diff = 0.000 eV
%% Cell type:markdown id: tags:
Explanation of keys:
- `k` : k-point
- `s` : spin
- `b` : band
- `sigmax` : $\langle k,s,b|\Sigma_x|k,s,b\rangle$, Exchange self-energy
- `vxcl` : $\langle k,s,b|V_{xc}^{local}|k,s,b\rangle$, Local exchange and correlation
- `vxcnl` : $\langle k,s,b|V_{xc}^{non-local}|k,s,b\rangle$, Non-local exchange and correlation
- `hf` : $\varepsilon_{k,s,b}+\langle k,s,b|\Sigma_x-V_{xc}^{local}-V_{xc}^{non-local}|k,s,b\rangle$, perturbative Hartree-Fock
- `z` :
- `eks` : $\varepsilon_{k,s,b} = \langle k,s,b|H_{KS}|k,s,b\rangle$, Kohn-Sham eigenvalue
- `eqpLin` : $\varepsilon_{k,s,b} + \langle k,s,b|\Sigma_c(\varepsilon_{k,s,b})|k,s,b\rangle$, Kohn-Sham eigenvalue
- `eqpSec` : $\varepsilon_{k,s,b} + \langle k,s,b|\Sigma_c(\varepsilon_{k,s,b})|k,s,b\rangle$, Kohn-Sham eigenvalue
- `sigmac_eks` : $\langle k,s,b|\Sigma_c(\varepsilon_{k,s,b})|k,s,b\rangle$, Correlation self-energy evaluated at $\varepsilon_{k,s,b}$
- `sigmac_eqpLin` : $\langle k,s,b|\Sigma_c(\varepsilon_{k,s,b})|k,s,b\rangle$, Correlation self-energy evaluated at $\varepsilon_{k,s,b}$
- `sigmac_eqpSec` : $\langle k,s,b|\Sigma_c(\varepsilon_{k,s,b})|k,s,b\rangle$, Correlation self-energy evaluated at $\varepsilon_{k,s,b}$
%% Cell type:code id: tags:
``` python
from westpy import ElectronicStructure
```
%%%% Output: stream
_ _ _____ _____ _____
| | | | ___/ ___|_ _|
| | | | |__ \ `--. | |_ __ _ _
| |/\| | __| `--. \ | | '_ \| | | |
\ /\ / |___/\__/ / | | |_) | |_| |
\/ \/\____/\____/ \_/ .__/ \__, |
| | __/ |
|_| |___/
WEST version : 3.1.1
Today : 2021-05-19 21:55:09.144532
%% Cell type:code id: tags:
``` python
es = ElectronicStructure()
es.addKey("eks","Kohn-Sham energy (eV)")
es.addKey("eqp","Quasiparticle energy (eV)")
```
%% Cell type:code id: tags:
``` python
for i, b in enumerate(bandmap) :
es.addDataPoint([1,1,b],"eks",eqp["eks"][i])
es.addDataPoint([1,1,b],"eqp",eqp["eqpSec"][i])
```
%% Cell type:code id: tags:
``` python
es.plotDOS(k=1,s=1,energyKeys=["eks","eqp"],energyRange=[-20,5,0.01])
```
%%%% Output: stream
Requested (emin,emax) : -20 5
Detected (emin,emax) : -16.134751796731177 0.6648562238096314
output written in : dos.png
waiting for user to close image preview...
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
%%bash
wget -N -q http://www.west-code.org/doc/training/silane/wfreq_spec.in
```
%% Cell type:code id: tags:
``` python
%%bash
cat wfreq_spec.in
```
%%%% Output: stream
input_west:
qe_prefix: silane
west_prefix: silane
outdir: ./
wstat_control:
wstat_calculation: S
n_pdep_eigen: 50
wfreq_control:
wfreq_calculation: XwgQP
n_pdep_eigen_to_use: 50
qp_bandrange: [1,5]
n_refreq: 300
ecut_refreq: 2.0
ecut_spectralf: [-1.5,0.5]
n_spectralf: 1000
%% Cell type:code id: tags:
``` python
%%bash
mpirun -n 2 wfreq.x -i wfreq_spec.in > wfreq_spec.out
```
%% Cell type:code id: tags:
``` python
import json
import numpy as np
import matplotlib.pyplot as plt
with open('silane.wfreq.save/wfreq.json') as json_file:
data = json.load(json_file)
k = 1
kindex = f"K{k:06d}"
print(kindex)
print(data["output"]["P"].keys())
bandmap = data["output"]["Q"]["bandmap"]
eqp = data["output"]["Q"][index]
freqlist = np.array(data["output"]["P"]["freqlist"], dtype="f8")
spf = data["output"]["P"][index]
for i, b in enumerate(bandmap) :
print(f"band = {b}")
eks, eqpLin, eqpSec = eqp['eks'][i], eqp['eqpLin'][i], eqp['eqpSec'][i]
sigmax, vxcl, vxcnl = eqp['sigmax'][i], eqp['vxcl'][i], eqp['vxcnl'][i]
sigmac_eks = eqp['sigmac_eks']['re'][i]
sigmac_eqpLin = eqp['sigmac_eqpLin']['re'][i]
sigmac_eqpSec = eqp['sigmac_eqpSec']['re'][i]
z = eqp['z'][i]
print(eks,eqp['sigmac_eks']['re'][i])
bindex = f"B{b:06d}"
sigmac = np.array(spf[bindex]['sigmac']['re'], dtype="f8")
plt.plot(freqlist,sigmac+sigmax-vxcl-vxcnl,'b-',label=r"$\Sigma_{xc}(E)-V_{xc}$")
plt.plot(freqlist,freqlist-eks,'r-',label=r"$E-\varepsilon_{KS}$")
plt.plot(freqlist,sigmac_eks+sigmax-vxcl-vxcnl+(1-1/z)*(freqlist-eks),'g-',label=r"$\Sigma^{lin}_{xc}(E)-V_{xc}$")
plt.legend()
plt.title(kindex+" "+bindex)
plt.xlabel("frequency (eV)")
plt.ylabel(r"$function (eV)$")
xmin, xmax = min(eks, eqpLin, eqpSec), max(eks, eqpLin, eqpSec)
ymin, ymax = min(sigmac_eks, sigmac_eqpLin, sigmac_eqpSec), max(sigmac_eks, sigmac_eqpLin, sigmac_eqpSec)
ymin += sigmax - vxcl -vxcnl
ymax += sigmax - vxcl -vxcnl
plt.vlines(x=eks,ymin=ymin-0.2*(ymax-ymin),ymax=ymax+0.2*(ymax-ymin),ls="--")
plt.vlines(x=eqpLin,ymin=ymin-0.2*(ymax-ymin),ymax=ymax+0.2*(ymax-ymin),ls=":")
plt.vlines(x=eqpSec,ymin=ymin-0.2*(ymax-ymin),ymax=ymax+0.2*(ymax-ymin),ls=":")
plt.xlim([xmin-0.2*(xmax-xmin),xmax+0.2*(xmax-xmin)])
plt.ylim([ymin-0.2*(ymax-ymin),ymax+0.2*(ymax-ymin)])
plt.show()
#for key in eqp:
# if("re" in eqp[key]):
# print(f" {key} = {eqp[key]['re'][i]:.3f}, {eqp[key]['im'][i]:.3f} eV")
# else:
# print(f" {key} = {eqp[key][i]:.3f} eV")
print()
```
%%%% Output: stream
K000001
dict_keys(['freqlist', 'K000001'])
band = 4
-8.230102882308456 0.012646784475642808
%%%% Output: display_data
![]()
%%%% Output: stream
band = 5
-0.46551944347590346 -0.34895815035534355
%%%% Output: display_data
![]()
%%%% Output: stream
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment